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Abstract. Recently developed methods, including time-to-event and space-to-event mod-
els, estimate the abundance of unmarked populations from encounter rates with camera trap
arrays, addressing a gap in noninvasive wildlife monitoring. However, estimating abundance
from encounter rates relies on assumptions that can be difficult to meet in the field, including
random movement, population closure, and an accurate estimate of movement speed. Under-
standing how these models respond to violation of these assumptions will assist in making
them more applicable in real-world settings. We used simulated walk models to test the effects
of violating the assumptions of the time-to-event model under four scenarios: (1) incorrectly
estimating movement speed, (2) violating closure, (3) individuals moving within simplified ter-
ritories (i.e., movement restricted to partially overlapping circles), (4) and individuals clustering
in preferred habitat. The time-to-event model was robust to closure violations, territoriality,
and clustering when cameras were placed randomly. However, the model failed to estimate
abundance accurately when movement speed was incorrectly estimated or cameras were placed
nonrandomly with respect to habitat. We show that the time-to-event model can provide unbi-
ased estimates of abundance when some assumptions that are commonly violated in wildlife
studies are not met. Having a robust method for estimating the abundance of unmarked popu-
lations with remote cameras will allow practitioners to monitor a more diverse array of popula-
tions noninvasively. With the time-to-event model, placing cameras randomly with respect to
animal movement and accurately estimating movement speed allows unbiased estimation of
abundance. The model is robust to violating the other assumptions we tested.

Key words: abundance; camera trapping; density; estimation; monitoring; noninvasive; remote camera;
sampling; space-to-event; time-to-event; unmarked.

INTRODUCTION

The use of remote cameras to monitor wildlife has
seen extensive growth in recent decades, both in quanti-
fying habitat use and in estimation of abundance and
other demographic parameters. The first abundance

estimates with remote cameras used capture–recapture
methods and required species with naturally occurring
marks that make individuals uniquely identifiable (Kar-
anth 1995, Karanth and Nichols 1998). Mark–resight
(Arnason et al. 1991) and spatial mark–resight (Soll-
mann et al. 2013a,b) models relax the uniquely identifi-
able requirement by allowing estimation of partially
marked populations and populations with marked but
not identifiable individuals. However, mark–resight
models still require that some portion of the population
be distinguishable, which is not the case for many popu-
lations of interest.
There are currently two broad approaches to estimat-

ing abundance of unmarked populations with remote
cameras: estimating abundance directly by treating the
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number of animals that appear on camera as a function
of some set of detection parameters (such as detection
probability or distance from an activity center) that is
jointly estimated with abundance, as in the N-mixture
(Royle 2004) and spatial count models (Chandler and
Royle 2013); and estimating density within camera view-
sheds that representatively sample a study area, includ-
ing distance sampling (Howe et al. 2017), random
encounter models (Rowcliffe et al. 2008), random
encounter and staying time models (Nakashima et al.
2018), instantaneous sampling, and space- and time-to-
event models (Moeller et al. 2018). The first set of mod-
els relies on potentially restrictive assumptions regarding
the availability of individuals to be detected at a given
camera. Meeting or checking these assumptions when
individuals cannot be distinguished is challenging, and
failing to meet the assumptions can cause bias in the
estimates of abundance (Royle et al. 2013, Keever et al.
2017).
The second set of models relies on the broader

assumption that cameras are placed randomly with
respect to animal movement (i.e., that the cameras repre-
sentatively sample the area to which inferences about
density will be applied). This assumption can be met
through random or systematic camera placement with-
out any knowledge of animal movement patterns. Addi-
tional assumptions can increase the precision of models
in this set at the cost of bias if the assumptions are not
met (Moeller et al. 2018). In the least restrictive cases,
such as instantaneous sampling and distance sampling,
the number of animals on camera is treated as count
data (Howe et al. 2017, Moeller et al. 2018). For low-
density species, these models will be inefficient because
most counts will be zero. An alternative is to model the
encounter process between animals and randomly
placed cameras as a function of density and movement
speed. This approach requires information about move-
ment speed, but has shown promise for both low-density
species (Cusack et al. 2015, Loonam et al. 2020) and rel-
atively abundant species (Rowcliffe et al. 2008, Moeller
et al. 2018).
Time-to-event analysis, also called survival analysis

and failure-time analysis, uses repeated measurements of
the amount of time that elapses before an event of inter-
est occurs to estimate the rate of that event. When esti-
mating density from camera traps, the event of interest is
an animal appearing in the viewshed, or a detection, and
the rate of interest is density, or the number of animals
per viewshed. To estimate density from repeated mea-
sures of the time until an animal appears in a viewshed,
the model makes three additional assumptions.
First, the time-to-event model assumes that spatial

counts of animals, or the number of animals in equal
subsets of the landscape, are Poisson distributed at the
scale of a camera viewshed. Ecologists commonly use
the Poisson distribution to model count data (Thomas
1949). The spatial counts of animals will be Poisson dis-
tributed if individuals are equally likely to be in any

section of a landscape and the location of one individual
does not affect the location of other individuals. In field
sampling, this assumption could be violated by animals
grouping together, potentially due to clumped resources
or social behavior, or by animals avoiding each other,
potentially due to territoriality. Violating the Poisson-
distributed assumption should bias the estimate low for
aggregated populations and high for evenly dispersed
populations. However, the model may be robust to some
degree of aggregation or dispersion. Camera viewsheds
sample a small area relative to animal space use, so, even
when animals aggregate around a resource, most counts
of animals in the viewshed will be 1 or 0 individuals, as
expected under a Poisson distribution at low densities.
The second assumption of the time-to-event model is

that of an accurate estimate of movement speed (includ-
ing rest time) for the population. At constant density,
encounter rate increases linearly with increasing animal
movement speed, so any model that estimates density
from encounter rate needs to account for movement
speed (Carbone et al. 2001). In the time-to-event model,
as movement speed increases, the observed time until an
animal appears on camera will decrease, and the density
estimate will be inflated. To account for this, we use ani-
mal movement speed and the area of camera viewsheds
to define discrete time periods. We measure the time
until an animal appears on camera as the number of
those periods.
Third, the model assumes that the population is closed

during sampling. Studies generally approximate closure
by limiting sampling to a short period of time, but esti-
mates of populations at low densities are more precise,
with the additional data from longer sampling frames
(Bischof et al. 2014, Dupont et al. 2019). In study
designs that use an estimate of detection probability to
estimate abundance, violating closure can bias the esti-
mate of detection probability and subsequently abun-
dance. The time-to-event model does not rely on an
estimate of individual detection probability, so it handles
lack of closure differently. If density changes during a
survey through individuals leaving or joining the popula-
tion, the time-to-event model should estimate the mean
density through time, rather than the total number of
individuals that were present for some portion of the
survey (e.g., if the population drops from 20 individuals
to 10 halfway through the study, the time-to-event model
should estimate 15 individuals. However, if the popula-
tion drops from 20 individuals to 10 at 4/5ths of the
study period, the time-to-event model should estimate
18 individuals).
Most studies will fail to meet at least some of the

assumptions of the model; therefore, before adopting
these models more broadly, researchers need to under-
stand the effects of violating assumptions on model per-
formance (Gilbert et al. 2020). We used modified
random walk models (Carbone et al. 2001, Codling et al.
2008) to test the effect of violating assumptions on
the bias and precision of density estimates from the
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time-to-event model under eight scenarios. In each sce-
nario, we modified a simple random walk model to test
the effect of violating one of the model assumptions. In
the first scenario, we looked at the effect of estimating
the movement speed of the population inaccurately by
changing how far individuals move in the simulation. In
the second scenario, we allowed the length of each step
to vary randomly, with the mean held constant. In the
third scenario, we simulated different true abundances to
test the effect of density on the estimate. In the fourth
scenario, we varied how often individuals turn. In the
fifth scenario, we tested the effect of violating the closure
assumption by removing individuals during the simula-
tion. In the sixth scenario, we tested the effect of animals
being more evenly distributed than predicted by a Pois-
son distribution by restricting individual movement to
partially overlapping areas representing territories. The
final two scenarios tested the effect of violating the Pois-
son assumption and the random movement assumption
by simulating movement with respect to a randomly gen-
erated habitat with two camera-placement strategies:
random placement and cameras placed to target the pre-
ferred habitat. For both camera-placement methods in
the habitat scenario, we applied two versions of the time-
to-event model: the basic model and a second version
that adjusts the density estimate for spatial variation in
density using habitat covariates.

MATERIALS AND METHODS

Time-to-event model

If the number of animals in camera viewsheds is Pois-
son distributed, the number of animals (N) that pass
through the camera viewshed during a period of time is
Poisson distributed around density (λ):

N ∼Pois λð Þ: (1)

In time-to-event analysis, the time that passes until a
Poisson-distributed event occurs (TTE) is exponentially
distributed around the rate parameter (λ), in this case
density:

TTE∼ExpðλÞ: (2)

Because the time until a Poisson-distributed event
occurs is exponentially distributed around density, we
can estimate density with repeated measures of TTE.
Sampling for the time-to-event model requires defini-

tions for two time intervals. First, the number of animals
passing through the viewshed during a time period (N)
depends on the length of the period. If the length of the
period is equal to the amount of time the average animal
takes to pass through a viewshed, N will be distributed
around the mean number of animals per viewshed, or
density (λ). Setting the length of the period requires an
estimate of mean movement speed of the population

(including rest time) and a measurement of the distance
across the viewshed. Without accounting for movement
speed, higher detection rates could be due to higher
movement speed rather than higher density. Defining
periods by the amount of time animals spend in a view-
shed, on average, scales lambda to reflect the number of
animals per viewshed while accounting for movement
speed.
Second, sampling requires a defined occasion, or the

amount of time spent observing the viewshed waiting for
an event to occur. If an event does not occur during the
sampling occasion, it is recorded as a right-censored
event. Breaking the study into sampling occasions,
rather than measuring the time between successive
events, allows multiple measurements of TTE for each
camera. It also eliminates the need to define a rule for
independent events (e.g., Rowcliffe et al. [2008]), as only
the first animal passing the camera during an occasion is
counted. Defining the length of occasions as some num-
ber of periods (e.g., five periods per occasion) allows
TTE to be recorded as the number of periods until an
event occurs (e.g., if an animal appears on camera dur-
ing the first period, TTE is 1 for that occasion; if an ani-
mals appears during the fifth period, TTE is 5). In
practice, the number of periods in each occasion does
not change the estimate or its precision (Loonam et al.
2020), and recording TTE as an integer number of peri-
ods, rather than a continuous time, causes a negligible
bias (<1%, K. Loonam, unpublished data).
The time-to-event model can accommodate spatial

variation in density. The basic application of the model
estimates a single mean density across the sampled land-
scape; however, repeated measures of TTE for each cam-
era allow for a density estimate at each camera. The
variation in density among cameras can be modeled as
the result of spatial covariates with a generalized linear
model:

log λið Þ¼ β0þβXi , (3)

where λi is the estimated density at camera i and βXi rep-
resents spatial covariates of camera i and their coeffi-
cients. With estimates for the effects of spatial
covariates, the density of animals across the study area,
λ, can be estimated using

λ¼ 1=n�∑
n

i¼1
exp β0þβXið Þ, (4)

where n is the total number of potential camera locations
in the study area, including unsampled locations, and Xi

is the measure of the environmental covariates and
potential camera location i.

Control

To test the effect of violating assumptions in each sce-
nario, we compared each to a control simulation. In the
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control, 16 individuals moved randomly within a 100 ×
100 unit square. Distance measurements do not have a
defined unit in the simulation, so they can be thought of
at any scale. However, whatever the units, the simulated
density in terms of animals per viewshed is high com-
pared to most studies (e.g., if the area of a viewshed is
50 m2, the simulated density in the control would be 64
individuals per km2). We divided the square into 36 cells
with one detector, representing a camera trap with per-
fect detection, placed randomly in each cell. Detectors
recorded an individual if the individual passed within a
radius of π/4 units of a detector during a given step. We
used a radius of π/4 units for the detectors so that the
average path across the circular detection zone was 1
unit long (i.e., in 1 period, an individual takes 1 step,
which is 1 unit long, allowing individuals to, on average,
cross a detection zone in a single period given a random
angle of approach; Appendix S1). The choice of circular
detection zones is arbitrary. Because viewsheds vary in
shape depending on the camera placement (Rowcliffe et
al. 2008, Loonam et al. 2020), we use a shape that is
easily simulated and measured.
Each individual took 1,000, 1-unit steps during the

simulation, with turns at random angles every five steps.
When a movement path would leave the 100 × 100
square, we flipped the x- or y-axis portion of that step
and subsequent steps until the next turn to keep the indi-
vidual in bounds. We defined periods as one step in the
simulation, so recording the step at which a detection
occurred also recorded TTE. We set occasion length
equal to five periods. With 1,000 periods (defined by
steps) and five periods per occasion, each run of the simu-
lation was 200 occasions long with 16 individuals moving
relative to 36 detectors for a total of 7,200 observations of
TTE.We ran each simulation 1,000 times.

Movement speed

If animals moved faster than the estimated movement
rate, we expected density to be overestimated, and vice
versa. To simulate the effect of incorrectly estimating ani-
mal movement speed, we modified the step length while
keeping the other variables constant. If step length equals
0.5, rather than 1, it will take individuals two steps to
cross a detection zone. If step length equals 2, it will only
take half a step to cross a detection zone. We used a range
of 15 different step lengths (0.5, 0.6, 0.7, . . ., 1.4, 1.5) to
capture the trend in abundance estimates from incorrectly
estimating movement speed. We ran each speed simula-
tion 1,000 times. As a post-hoc analysis, we fit a simple
linear model between step length and estimated abun-
dance to measure the magnitude of the effect.

Variable step length

Variable step lengths should not affect the abundance
estimate as long as the mean movement speed is cor-
rectly estimated. To test this, we randomly drew step

lengths from an exponential distribution with a mean of
1 (λ = 1). The resulting step lengths resemble an “L-
shaped” curve with most steps being small but large val-
ues pulling the average up. This could be seen in a natu-
ral setting if animals tend to be relatively stationary then
move long distances. We applied the same step length to
each step taken between turns. Thus, if the step length
was 2 and the number of steps taken between turns was
5, the individual would move 10 units, then turn and
select a new step length.

Density

Higher densities should yield more precise estimates
because higher encounter rates effectively provide more
data. To test the effect of density on the time-to-event
estimator, we assigned true abundance in the control
simulation to powers of 2 from 2 to 256 (i.e., 2, 4, 8, . . .,
256).

Turn frequency

Turn frequency should not change the abundance esti-
mate as long as individuals move through a detection
zone, rather than turning within the detection zone. To
vary turn frequency in the random walk, we modified
the number of steps taken between each turn. In the con-
trol, individuals take five steps between turns. We ran
the random walk with individuals taking from 1 to 25
steps between turns. Individuals always took the same
number of steps between turns; there was no variation
within runs.

Open population

If the closure assumption is violated and population is
open, perhaps because of an extended survey period, we
expected the time-to-event model to estimate mean den-
sity through time. To test the effect of violating the clo-
sure assumption, we simulated the population
decreasing during the survey. We started with 20 individ-
uals and censored individuals randomly throughout the
survey until only 12 individuals remained. We censored
individuals at random time steps, but, in each iteration
of the simulation, the timing of the removals kept the
average abundance equal to 16 individuals when the
length of time each individual is present is taken into
account.

Territoriality

To test the effect of animals being more evenly dis-
tributed than expected under the Poisson assumption,
we simulated individuals moving in territories. We simu-
lated simple territories by specifying the start location of
each individual and restricting their movements in a
radius around the start location. We arranged the 16
start locations in a grid, with the first individual starting
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at (x = 12.5; y = 12.5) and the last individual starting at
(x = 87.5; y = 87.5). The nearest neighbors for each
individual started 25 units away on the x- or y-axis. Indi-
viduals moved randomly within a radius of 12.5 units
around their start location. When individuals left that
radius, subsequent turn angles tended towards the indi-
vidual’s start location, with the strength of the effect
increasing with distance. Those movement rules result in
a circular area used by each individual with more time
spent near the center of the “territory” and the edges
overlapping with adjacent “territories.” To check
whether the territoriality model caused dispersion in the
counts of individuals at cameras, we recorded the num-
ber of individuals that encountered each detector during
each time step and compared that to the control simula-
tion. We did not expect the “territories” to have any
effect on the time-to-event model, because, even with
completely random movement, most cameras only have
one animal in the viewshed at a given time.

Habitat—random cameras

For the two scenarios testing the effect of animals
clustering in high-quality habitat, we modeled individu-
als to move preferentially toward high-quality habitat on
a simulated landscape. To generate the landscape, we
drew random habitat quality scores from a normal dis-
tribution at two levels of hierarchy, 16 large cells each
divided into 625 subcells. The first level of hierarchy
divided the landscape into a 4 × 4 grid, with the mean
habitat quality score for each of the 16 cells drawn from

a standard normal distribution. The second level of hier-
archy provided habitat values for each subcell drawn
from a normal distribution centered on the mean value
of the habitat quality score of the cell. The resulting
landscape consists of 16 cells, each 25 × 25 subcells, with
habitat quality scores that tend to be more similar within
cells than between cells (Fig. 1).
We used a simplistic model of animal movement rel-

ative to habitat to simulate preference for higher habi-
tat quality scores. For each new angle an individual
selected, we averaged the habitat scores along eight
potential paths, the paths that go in a cardinal direc-
tion and the paths halfway between any two cardinal
directions. We generated the actual turn angle from a
circular distribution centered on the direction with the
highest average habitat quality score. Randomly draw-
ing the direction of travel results in individuals tending
toward the best adjacent habitat with the variance
allowing occasional movements away from the best
habitat to prevent individuals from getting stuck in
one part of the landscape (Fig. 1).
We fit the basic time-to-event model in which mean

density is estimated directly from the observed TTE (Eq.
2) and the model estimating density by adjusting for
habitat with a generalized linear model (Eqs. 3, 4). Simi-
lar to the territory model, we recorded the number of
individuals encountering each detector during a time
step to compare the dispersion in counts to the control.
We also recorded the number of points in each subcell
and the habitat score of the subcells. We fit a negative
binomial GLM between the counts in each subcell and

FIG. 1. Two simulated paths from the modified random walks. The left figure shows four individuals moving in simulated terri-
tories with the bottom and left sides bounding the simulated area. The figure on the right is an individual moving on a landscape to
test the effect of clustered movements on the time-to-event model. Light colors represent preferred habitat. The individual tends
toward preferred habitat and avoids less-preferred habitat, resulting in clustered movement.
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the habitat score to examine the actual effect of the sim-
ulated habitat preference, which, because of the stochas-
tic simulation, was not known in advance. We chose a
negative binomial model because we expected the vari-
ance between counts to be greater than the mean count,
and we did not want to inflate our power to detect an
effect. In the randomly placed camera scenario, we
expected both the basic model and the version adjusting
for spatial variation in density to estimate density
accurately.

Habitat—targeted cameras

To test the effect of nonrandom movement with
respect to the cameras, we placed cameras nonrandomly
with respect to the simulated landscape. The simulations
of targeted camera placement use the same habitat gen-
eration and habitat preference rules as the habitat simu-
lations with random camera placement. In all of the
previous simulations, we placed one camera randomly in
each of 36 sampling cells. In the targeted camera place-
ment simulation, we assigned each camera to the subcell
with the single highest habitat quality score in each sam-
pling cell. This targeted sampling maximized detections,
as might be the goal in capture–recapture or occupancy
studies. However, for time-to-event studies, sampling to
maximize detections will inflate the density estimate by
lowering the observed TTE. Again, we estimated density
twice for each run of the simulation, once without
adjusting for habitat, and once adjusting for habitat with
the generalized linear model (GLM). With targeted cam-
era placement, we expected the basic model to overesti-
mate density and the version adjusting for spatial
variation in density to counteract the bias caused by tar-
geted camera placement.

Statistical methods

We used Bayesian methods to estimate abundance
from each run of the simulations using Markov chain
Monte Carlo (MCMC) implemented in JAGS (Plummer
2017) through R (R Development Core Team 2019) and
the R2jags package (Su and Yajima 2015). We could not
assess model convergence for each run of the simulations
individually, so we ran each model for a burn-in of
10,000 iterations then updated the model in batches of
100,000 iterations of three chains until the Gelman–
Rubin convergence diagnostic (R̂) (Gelman and Rubin
1992) was <1.1. We discarded any simulations that failed
to achieve an R̂ value <1.1 within 500,000 iterations.
The posterior distributions of the initial runs were sym-
metrical, so we recorded the mean of the posterior as the
estimate of abundance and the standard deviation (SD)
of the posterior as a measure of precision to save com-
puting memory during the simulation runs.
We examined the bias and the precision of the estima-

tor for each simulation scenario. We used relative bias
(RB) to measure bias

RB¼ 1=n ∑
n

j¼1
ðEj �AÞ=A, (5)

where n is the total number of runs of the simulation, Ej

is the estimated abundance on the jth run of the simula-
tion, and A is the true abundance. We examined two ver-
sions of precision: the observed precision (how precise
the point estimates of abundance were between runs)
and the estimated precision (how precise the model esti-
mate was for each run). We used SD of the estimated
abundances from each scenario to examine the observed
precision:

SD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n�1 ∑

n

j¼1
Ej �E
� �2� �s

, (6)

where n is the total number of runs of the simulations, Ej

is the estimated abundance on the jth run of the simula-
tion, and E is the mean of the estimates of abundance.
To examine the estimated precision, we took the SD of
the poster distribution for each run of the simulation
and recorded the mean of those SDs as the estimated
precision. We compared the observed and estimated SD
to check the accuracy of the precision estimates from the
time-to-event model. We also report coverage, the pro-
portion of runs in which the 95% credible interval con-
tained the true abundance.

RESULTS

Control

In the control simulation, the time-to-event model
estimated a mean of 15.45 (Table 1) animals, slightly
below truth (N = 16 individuals). The observed SD of
the estimates was 1.96, and the mean estimated SD was
1.49, meaning that the model overestimated precision.
Precision was overestimated in almost all of the simula-
tions. Coverage in the control simulation was 0.85,
slightly below expected value of 0.95. Throughout this
section we summarize the results of each simulation and
draw attention to places where each simulation deviates
from the control. The full results are presented in
Table 1 or visualized in Fig. 2.

Speed

Incorrectly estimating speed had a linear effect on
abundance estimates in the simulation (Fig. 2a). At
the low end of the tested speeds (step length = 0.5), x
abundance was 9.20 (SD = 2.16). At the high end of
the tested speeds (step length = 2) the x abundance
estimate was 28.36 (SD = 2.29) (Table 1). The rela-
tionship between step length and estimated abun-
dance was linear with a coefficient of 0.80
(SE = 0.002; Fig. 2a).
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TABLE 1. Results from simulations testing the effects of violating the assumptions of the time-to-event model on abundance
estimates.

Simulation Mean of estimates SD of estimates Mean SD % Bias Coverage

Control 15.45 1.96 1.49 −3.46% 0.85
Speed = 0.5 9.20 2.16 1.23 −42.5% 0.04
Speed = 2 28.36 2.28 2.17 77.2% 0.00
Open population 15.41 1.96 1.49 −3.67% 0.84
Territoriality 15.37 2.10 1.49 −3.88% 0.80
Variable step length 15.71 1.96 1.50 −1.81% 0.87
Habitat—Random—Base 16.34 2.70 1.53 2.14% 0.73
Habitat—Random—GLM 16.14 2.52 2.41 0.84% 0.91
Habitat—Targeted—Base 26.52 3.36 1.96 65.8% 0.01
Habitat—Targeted—GLM 11.86 4.64 4.18 −25.9% 0.68

Notes: Mean estimate is the mean of the reported abundance estimates from each iteration of the simulation. SD of estimates is
the observed precision as measured by the SD of the estimates of abundance from each run. Mean SD is the estimated precision as
measured by the mean of the SDs of the posterior distribution of each run. Bias is measured as the percent bias.

FIG. 2. Box plots of bias in abundance estimates from random walk models testing the effect of three variables on the time-to-
event model. (a) Box plots of bias caused by varying movement on the distance traveled during each step (from 0.5 to 2) while hold-
ing estimated step length at 1. The line is the linear model of step length vs bias. The slope is 0.80. (b) Box plots of the bias in esti-
mates of abundance from the time-to-event model when abundance varied from 2 to 256 individuals. (c) Box plots of bias in
abundance estimates at variable turn frequencies. The number of steps taken before a new, random travel angle was taken varied
from 1 to 25. At approximately three steps between turns, the bias remains stable near 0 up to 25 steps between turns.
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Variable step length

Allowing step length to vary according to an exponen-
tial distribution did not affect the abundance estimates.
The mean estimated abundance was 15.71 (SD = 1.50).
Having variable step length did not lead to different
results from the control, indicating that mean movement
speed is sufficient for the time-to-event model.

Density

Varying density did not cause bias in the estimate of
abundance (Fig. 2b). As expected, higher densities
resulted in higher precision; however, the gap between
the observed and estimated precision increased at true
abundances higher than 16. From 2 individuals to 16
individuals, coverage was between 0.82 and 0.83. At 32
individuals coverage fell to 0.80, and by 256 individuals
coverage was 0.62, indicating that, at very high densities,
precision might be overestimated.

Turn frequency

High turn frequencies caused a negative bias in the
abundance estimates with 1 and 2 steps between turns
resulting in estimates of abundance biased low (Fig. 2c).
At 3 steps between turns and higher, there was no notice-
able bias.

Open population

In our simulation testing the effect of violating clo-
sure, the time-to-event model estimated the mean abun-
dance as 15.41 individuals (SD = 1.96) (Table 1),
approximating the control simulation (Appendix S2:
Fig. S3b). This result supports the prediction that the
time-to-event model estimates the average abundance
through time when density changes during the course of
a survey.

Territoriality

Simulations that restricted individuals to “territories”
resembled the control simulation. The estimated abun-
dance from the territorial simulation was 15.37 individu-
als (SD = 2.10; Table 1). The count of animals at each
camera during each occasion closely resembled the con-
trol (means of 0.029 and 0.028 for the territory and con-
trol simulations), as did the SD of counts (means of 5.20
and 4.82, respectively) indicating that the territories did
not cause underdispersion relative to the control.

Habitat—random cameras

In simulations where individuals had habitat prefer-
ences, but where cameras were still placed randomly, the
estimates remained in the same general range as the con-
trol. The model with no adjustment for spatial variation

in density returned a mean estimate of 16.34 individuals
(SD = 2.70), whereas the model using the GLM to
adjust for habitat returned a mean estimate of 16.14
individuals (SD = 2.52) (Table 1). The negative bino-
mial GLM fit to the count of individuals passing
through each habitat pixel showed a positive effect of
habitat in every run of the simulation with β = 0.24
(SD = 0.054) and se = 0.0047. The time-to-event GLM
detected the positive effect in the 95% CRI 92% of the
time. This shows that the simulation successfully created
a positive relationship between habitat and frequency of
use and that the GLM in the time-to-event model was
able to detect a relationship between density and habitat
nearly as often as expected.

Habitat—targeted camera placement

In simulations with targeted camera placement
designed to maximize detections, both the basic model
and the model using a GLM to adjust for habitat failed
to estimate abundance accurately. The basic model over-
estimated abundance (mean N = 26.52; SD = 3.36), and
the GLM-adjusted model underestimated abundance
(mean N = 11.86; SD = 4.64). In the targeted camera
placement scenario, the GLM detected a positive rela-
tionship between λ and habitat in the 95% CRI 86% of
the time.
Neither of the habitat simulations resulted in counts

that were convincingly overdispersed relative to the con-
trol (Appendix S2; Fig. S4). Both showed a higher vari-
ance in counts among cameras (mean SD of 5.20 for the
control, 7.67 for random placement, and 10.60 for tar-
geted placement), which should be expected because
some cameras will fall in high-quality habitat and others
in low-quality habitat. However, the SD of count�cam-
era−1�occasion−1, which includes both spatial and tem-
poral variation in counts, was comparable between the
control and random placement simulations (mean of
0.25 for the control and 0.24 for the random placement).
The SD of count�camera−1�occasion−1 was higher in the
targeted camera placement simulation (0.31) than in the
control, but that can be explained by the higher mean
count per occasion of the targeted placement simulation
(0.028 for the control and 0.047 for targeted placement).
Because the dispersion was not convincingly different
from the control, the habitat simulations are better
thought of as a violation of perfect random movement
than as a violation of the Poisson assumption.

DISCUSSION

Our simulations show that the time-to-event model is
robust to many scenarios commonly encountered in
studies of wild populations that violate the model’s
assumptions. Neither territoriality of a species, nor open
populations bias the results, and when animals move
nonrandomly with respect to habitat, the model is unbi-
ased as long as cameras are placed randomly. However,
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both targeting high-quality habitat when placing cam-
eras and incorrectly estimating movement speed bias the
estimate of abundance.
Incorrectly estimating speed caused a linear bias in

the abundance estimate (Fig. 2) with overestimates of
speed causing under estimation of abundance and vice
versa. The model requires movement speed to estimate
how long an individual will spend in a viewshed on
average, which would be best provided by relatively
fine-scale data such as short fix interval GPS (global
positioning system) collar data from the population
being sampled. If collar data are unavailable, sufficient
estimates of movement speed may exist in the literature,
particularly for well-studied species. Additionally, with
the appropriate camera setup, practitioners can esti-
mate movement speed directly from the camera data
(Rowcliffe et al. 2016, Nakashima et al. 2018). This
could be particularly useful for camera studies, as both
the time-to-event model and unbiased estimates of
movement speed from cameras rely on random camera
placement. If movement data are unavailable or unreli-
able, the space-to-event model may be more applicable
but will be less precise (Moeller et al. 2018). Because of
similarity in their assumptions and approach to esti-
mating abundance, we expect the space-to-event model
to respond similarly to the time-to-event model when
assumptions are violated.
High turn frequencies caused a negative bias in abun-

dance estimates. The length of the period should be
defined as the amount of time an average animal spends
in the viewshed. If animals turn within the viewshed or
immediately re-enter the viewshed, that length of time
will be longer than calculated by dividing distance by
speed. If animal movement is measured as relatively lin-
ear on the scale of viewsheds, turn frequency should not
cause bias. In practice, this will not be a problem with
estimates from GPS collars, where the fix intervals will
miss extremely fine scale movement, or with estimates
from cameras, where practitioners can measure the time
spent in the viewshed directly (Nakashima et al. 2018).
Simulating high densities inflated the precision of the

estimates, however, the densities we simulated are higher
than most of the densities in real-world applications. For
example, in the runs with 32 individuals, which is when
coverage of the CRI began to decline, if the area of the
detection zones was 50 m2 (the area of a 45° wedge with
an 8-m detection radius, comparable to common study
designs; see Rowcliffe et al. 2008 and Loonam et al.
2020), the simulated density would have been equivalent
to 64 individuals∙km−2. High densities could interact
with other factors, such as territoriality or clumping in
high quality habitat, to cause overdispersion or
underdispersion. However, the mean number of animals
per viewshed (λ) will still be much <1, even in high-
quality habitat. Social behavior, such as traveling in
groups, could cause overdispersion of counts. The extent
to which that would impact the time-to-event model
likely depends on how tightly the animals group relative

to the size of the viewshed. If social grouping does cause
bias, adjusting for it with an independent measure of
group size, similar to the random encounter model
(Rowcliffe et al. 2008), could adjust for the bias.
The open population simulation shows that the model

handles closure differently than capture–recapture mod-
els. Capture–recapture methods rely on estimating the
probability of detecting individuals to estimate abun-
dance (N) with

N̂ ¼ C
p̂ ,

where C is the observed count of animals and p̂ is the
estimated detection probability (Nichols 1992). When
individuals are present and available to be detected dur-
ing one portion of a survey, but not another, detection
probability is underestimated and abundance is overesti-
mated, approximating the total number of animals that
were in the study area during some portion of the survey
or decreasing precision (Kendall 1999). In contrast, the
time-to-event model estimates the mean density through
time. This means that lack of closure does not bias the
estimate or decreases the precision in the same way it
does in capture–recapture studies, potentially allowing
sampling over a longer time frame. If the change in
abundance through time is of interest, practitioners can
break the survey into multiple periods and estimate the
average abundance in each period at the cost of some
precision.
In the habitat simulations with randomly placed cam-

eras, both the base model and the model adjusting for
habitat with a GLM returned estimates comparable to
the control simulation, indicating that nonrandom
movement does not bias the model as long as cameras
are placed randomly. The most significant difference
between the base model and the GLM model was preci-
sion. Both models were less precise than the control sim-
ulation, but the GLM model had the most accurate
estimate of precision. This could be due to accurately
estimating the effect of habitat on density or to adding
an additional variable. Any additional variable will
increase the width of the CRI.
Nonrandom sampling biases estimators (Fisher 1925).

In the time-to-event model, targeting landscape features
to maximize detections (e.g., roads and trails) will likely
be the most common form of nonrandom sampling. In
our habitat simulations with targeted camera placement,
the base time-to-event model greatly overestimated
abundance (27 vs. 16), and the time-to-event model with
a GLM adjusting for habitat greatly underestimated
abundance (12 vs. 16). The underestimation of the GLM
adjusted model may be caused by a nonlinear effect of
habitat. With the targeted camera placement, lower-
quality habitats were not sampled. If the relationship
between density and habitat quality is different at the
high and low ends of the habitat values, extrapolating to
the unsampled range of habitat values will fail. Further
work could explore alternative sampling strategies that
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might provide unbiased estimates while still improving
detection rates, such as targeting the best habitat with a
portion of the cameras while placing the rest of the cam-
eras randomly to sample the full range of habitat quality.
However, monitoring a random sample of habitat by
deploying cameras at randomly or systematically gener-
ated points, rather than sampling to maximize detec-
tions, remains the most reliable sampling technique for
minimizing bias. Low detection rates of randomly placed
cameras could be countered by extended camera deploy-
ments or deploying additional cameras. Data from sur-
veys with camera placement that was not designed to
sample the landscape randomly are unlikely to provide
unbiased estimates from the time-to-event model.
One assumption of the time-to-event model that we

did not test here is perfect detection of animals within
the viewshed. False negatives are guaranteed in almost
any study relying on motion-triggered cameras. Estimat-
ing the rate of false negatives, potentially through a
dual-camera setup, distance sampling (Howe et al.
2017), or walk tests, allows its inclusion in the likelihood
(Moeller et al. 2018).
We encourage further research on the effects of violat-

ing assumptions on all of the methods for estimating
abundance of unmarked populations with remote cam-
eras. Most papers that use these methods do not include
discussions of the model assumptions and how well they
are met (Gilbert et al. 2020). We expect methods that are
similar to the time-to-event model, such as the space-to-
event (Moeller et al. 2018) and random encounter (Row-
cliffe et al. 2008) models, to perform similarly to the
time-to-event model when assumptions are violated,
though the space-to-event model should be unaffected
by animal movement speed. Additionally, methods that
focus on sampling the landscape have assumptions that
are easier to meet than methods that attempt to estimate
abundance by sampling unmarked individuals. Placing
cameras randomly to representatively sample a land-
scape does not require any knowledge of animal move-
ment or distribution relative to the sampling grid.
Exploring all of the methods with similar, simulation-
based approaches will help compare the methods and
understand their utility.
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OPEN RESEARCH
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5281/zenodo.4771037

Xxxxx 2021 TIME-TO-EVENT CAMERATRAPPING Article e02388; page 11

https://mcmc<ucodep>&hyphen;</ucodep>jags.sourceforge.io/
https://mcmc<ucodep>&hyphen;</ucodep>jags.sourceforge.io/
http://www.r-project.org
https://cran.r<ucodep>&hyphen;</ucodep>project.org/web/packages/R2jags/index.html
https://cran.r<ucodep>&hyphen;</ucodep>project.org/web/packages/R2jags/index.html
http://onlinelibrary.wiley.com/doi/10.1002/eap.2388/full
http://doi.org/10.5281/zenodo.4771037
http://doi.org/10.5281/zenodo.4771037

